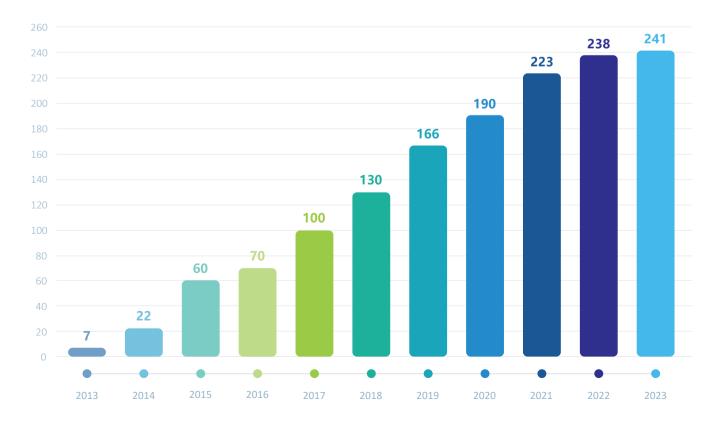


Compound Libraries

Selleck Compound Libraries have been cited in over 1,465 studies!



- Int J Mol Sci,2024,25(2)1265
- Cell Rep Med, 2024, S2666-3791 (23) 00604-3
- J Med Virol, 2024, 96(1):e29382
- Int Immunopharmacol, 2024, 128:111570
- Front Oncol, 2023, 13: 1126354
- Microbiol Spectr, 2023, 11(4):e0056623
- Microbiol Spectr, 2023, 11(4):e0056623
- Pharmaceuticals (Basel),2023,16(1)75
- J Biol Chem.2023.S0021-9258(23)01885-9
- Breast Cancer Res, 2023, 25(1):51
- Biomolecules, 2023, 13(2) 249
- J Exp Clin Cancer Res, 2023, 42(1):100
- Stem Cell Reports, 2023, 18(8): 1672-1685
- Biomedicines, 2023, 11(6) 1716
- Cell Div,2023,18(1):8

- Cancer Lett, 2023, 552:215981
- Adv Sci (Weinh),2023,10(5):e2205483
- Aging Cell, 2023, 22(10):e13948
- Stem Cell Reports, 2023, 18(8): 1672-1685
- Sci Rep, 2023, 13(1): 1442
- Biomedicines, 2023, 11(6) 1716
- Sci Adv,2023,9(1):eade1694
- Eur J Pharm Sci,2023,181:106362
- Front Microbiol, 2023, 14:1097413
- ACS Omega, 2023, 8(11):10397-10402
- Exp Mol Med, 2023, 55(4): 794-805
- Cancers (Basel),2023,15(7)2163
- Front Cardiovasc Med, 2023, 10:1130635
- Am J Cancer Res, 2023, 13(3):976-991
- Int J Biol Sci, 2023, 19(7): 2270-2288
- Adv Healthc Mater, 2023, e2300591
- Int J Mol Sci.2023.24(8)7578
- m Bioorg Chem, 2023, 130: 106264
- Int J Mol Sci, 2023, 24(7)6038
- Sci Adv,2023,10.1126/sciadv.adf0005
- ERJ Open Res, 2023, 9(1)00495-2022
- Pharmaceutics, 2023, 15(3) 925
- Acta Pharm Sin B,2023,13(1):142-156

- Chin Med, 2023, 18(1):30
- Sci Rep, 2023, 13(1):14429
- mBio.2023.e0137623.
- Front Pharmacol, 2023, 14:1233253
- Chembiochem.2023.e202300555
- J Exp Clin Cancer Res. 2023.42(1):249
- Nat Commun, 2023, 14(1):6690
- 1 Nat Commun, 2023, 14(1):7574
- Sci Rep, 2023, 13(1):19588
- Virus Res,2023,339:199248
- ASN Neuro, 2023,
- Int J Mol Sci, 2023, 24(13) 10696
- ASN Neuro, 2023, 15:17590914231184086
- J Biol Chem, 2023, 299(3):102956
- J Exp Clin Cancer Res, 2023, 42(1):249
- 1 Nat Prod Commun, 2023, 18(1)
- Cancer Res Commun, 2023, 3(7): 1152-1165
- mBio.2023.14(4):e0137623
- Image: Nat Commun, 2023, 14(1):6690
- ERJ Open Res, 2023, 9(1) 00495-2022
- Cell Death Discov, 2023, 9(1):57
- Chin Med, 2023, 18(1):30
- ...

Number of Publications Citing Selleck Compound Libraries (2013-2023)

2

High hit rates, rapid screening, and high-impact publications.

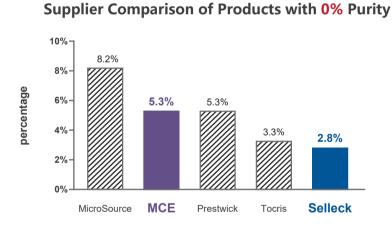
Based on published data, for every **100 Selleck compounds** used in primary screening, an average of **five target-active compounds** can be identified. The probability of obtaining target-active compounds generally increases with the number of compounds screened.

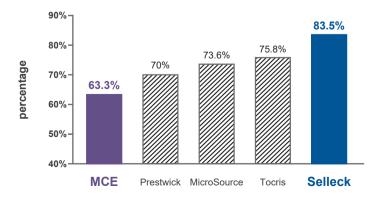
The following are examples of research papers that used Selleck Compound Libraries for screening:

Journal	IF	Time from Purchase to Publication	Total Number of Compounds in the Library	Number of Hit Compounds Identified	Selleck Compound Library
Cancer Cell	35.5	~13 months	~1,000	25	Customize Library (L2000)
Journal of the American Chemical Society	15.8	~10 months	3,725	488	Customize Library (L2000)
Nature Chemical Biology	15.7	~17 months	1,833	19	Customize Library (L2000)
Nature Communications	12.1	~14 months	74	14	Customize Library (L2000)
Viruses	3.8	~14 months	179	42	Customize Library (L2000)
Biomaterials	12.1	~12 months	1,226	15	FDA-approved Drug Library (L1300)
Cancer Letters	8.6	~12 months	1,431	12	FDA-approved Drug Library (L1300)
Protein & Cell	11.3	~12 months	3,035	12	FDA-approved Drug Library (L1300)
Protein & Cell	11.3	~21 months	2,661	12	Natural Product Library (L1400)
Nature Communications	12.1	~24 months	138	4	Natural Product Library (L1400)
Journal of Biomolecular Structure and Dynamics	2.7	~18 months	2,820	20	FDA-approved & Passed Phase I Drug Library (L3800)
Antiviral Research	5.8	~17 months	12,000	23	FDA-approved Drug Library (L1300)
Antiviral Research	5.8	~14 months	12,000	23	Preclinical/Clinical Compound Library (L3900)
Cell Stem Cell	26.3	~15 months	1,753	1,484	Bioactive Compound Library-I (L1700)
Cell Reports	10.4	~12 months	1,836	15	Bioactive Compound Library-I (L1700)
Journal of Biological Chemistry	5	~20 months	12,433	178	Bioactive Compound Library-I (L1700)
Journal of Biological Chemistry	5	~18 months	12,433	178	Bioactive Compound Library- II (L1700- II)
elife	9	~13 months	6,500	167	Kinase Inhibitor Library (L1200)
Journal of Biomolecular Structure and Dynamics	2.7	~20 months	4,208	1,230	Express-Pick Library (L3600)
Cell Reports	10.4	~15 months	351	44	Highly Selective Inhibitor Library (L3500)
Journal of Infection and Chemotherapy	2.1	~24 months	584	42	Metabolism Compound Library (L3700)

The Nature Medicine article validates the superior quality of Selleck products.

Nature Medicine Reported: 30% of Inhibitors on The Market Fail Basic Standards


Broad Institute recently tested compound libraries from all major producers, their findings show that 30% of all inhibitors don't meet basic standards.


The Drug Repurposing Hub: a next-generation drug library and information resource

Data Summary

3

Supplier Comparison of Products with >90% Purity

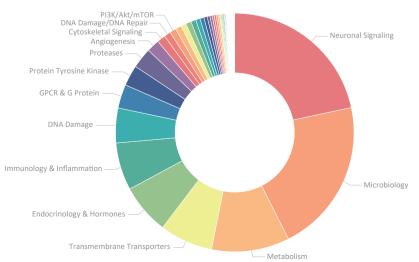
Data From: Nature Medicine, 2017, 23(4):405-408 (IF: 53.440) & The website created by the article author.

Popular Compound Libraries

FDA-approved Drug Library

4

A unique collection of **3,110** raw materials that have obtained market approval and are included in pharmacopoeias. These drugs have undergone extensive clinical trials, demonstrating good biological activity, safety, and bioavailability. They are suitable for high-throughput and high-content screening.


% of compounds compliant with Lipinski's Rules

Selleck			Other Company		
PhysChem Properties	% Compounds		PhysChem Properties	% Compounds	
The number of hydrogen bond donors	93		The number of hydrogen bond donors	88	
The number of hydrogen bond acceptors	97	VS	The number of hydrogen bond acceptors	90	
Partition coefficient	91		Partition coefficient	90	
Molecular weight	75		Molecular weight	79	

Approved agencies for molecules in the Selleck FDA library

Approved institution	Full name	Country
FDA	U.S. Food and Drug Administration	United States of America
CFDA	China Food and Drug Administration	China
EMA	European Medicines Agency	European
HMA	Heads Of Medicines Agency	European
NDC	National Drug Code	United States of America
PMDA	Pharmaceuticals and Medical Devices Agency	Japan
DMF	Drug Master File	United States of America

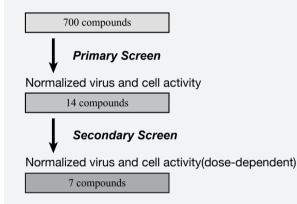
FDA-approved Drug Library Composition

Application of FDA-approved Drug Library in Antiviral

Calcium channel blockers reduce severe fever with thrombocytopenia syndrome virus (SFTSV) related fatality

This article (PMID:31444469) was published on Journal of Cell Research (IF=17) and took about thirteen months.

Summary

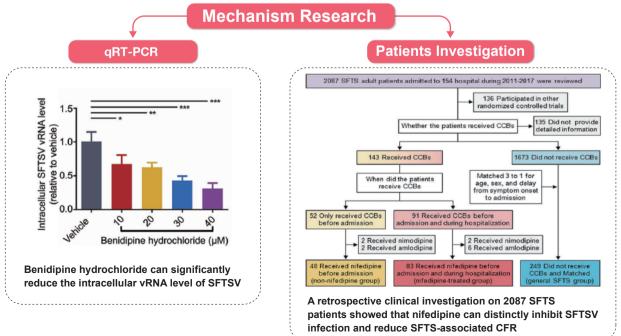

Severe fever with thrombocytopenia syndrome (SFTS) is caused by a novel phlebovirus (SFTSV), and there is no effective anti-SFTSV intervention at the present time. The author screened **700** drugs (**Selleck FDA-approved Drug Library**), and finds that calcium channel blockers(**benidipine hydrochloride, nifedipine**) can significantly inhibit SFTSV infection.

Experiment Design

1. Establish Cell Model for Screening

- 1. Vero cells infected with SFTSV;
- 2. Using automated imaging and quantitative analysis to test the percentage of SFTSV-infected cells;
- 3. The cell activity was measured by MTT assay.

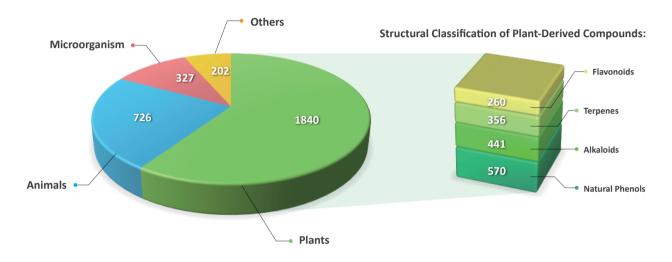
2. High-throughput Drug Screening


Compound Library: Selleck FDA-approved Drug Library

Model: Vero cells infected with SFTSV

Indicators: Virus infection (inhibition rate) and cell cytotoxicity (survive rate)

Results: Seven drugs displayed anti-SFTSV activity in a dose-dependent manner, and benidipine hydrochloride displayed the strongest inhibitory effect.


3. Mechanism Research

Natural Product Library

Natural products are small molecules extracted from animals, plants, and microorganisms in nature, known for their rich and complex chemical structures and biological activities. Many drugs used in clinical practice are derived from natural sources, constituting about 60% of modern pharmaceuticals. Research on natural products is crucial for lead compound discovery, traditional Chinese medicine development, and the advancement of applied chemistry.

The **Selleck Natural Product Library** comprises **3,070** compounds and derivatives sourced from diverse origins. With a wide range of structures and targeting multiple signaling pathways, these compounds are ideal for high-throughput screening. The Selleck Natural Product Library is sourced from the following:

Cited by 383 Publications:

- Nat Methods, 2022 19(7):803-811
- Signal Transduct Target Ther, 2022 7(1):97
- 1 Nat Biomed Eng, 2022 10.1038/s41551-022-00863-9
- Blood, 2022 blood.2022015414
- Cancer Cell, 2021 S1535-6108(21)00383-4
- Chem Soc Rev, 2021 10.1039/d0cs01065k
- Cancer Discov, 2021 candisc.0872.2020
- Cancer Discov, 2021 candisc.0930.2020
- Protein Cell, 2021 1-12
- Nature, 2020 582(7811):289-293
- Cell, 2020 181(7):1518-1532.e14
- Signal Transduct Target Ther, 2020 4;5:20.
- Cell Metab, 2019 7;29(5):1166-1181.e6.
- Cancer Discov, 2019 9(7):910-925
- Protein Cell, 2019 10(6):417-435
- Cancer Discov, 2018 8(4):498-515

- Nature, 2017 546(7659):533-538
- Cancer Discov, 2015 5(2):154-67.
- Nat Med, 2014 20(8):954-60
- Comput Biol Med, 2024 171:108163
- Nat Commun, 2023 14(1):7574
- Adv Sci (Weinh), 2023 10(13):e2206737
- Sci Data, 2023 10(1):296
- J Transl Med, 2023 21(1):553
- Anal Chem, 2023 95(20):7985-7992.
- Cell Death Discov, 2023 9(1):364
- J Infect Dis, 2023 228(5):591-603
- Nutrients, 2023 15(6)1490
- Int J Mol Sci, 2023 24(19)14479
- Int J Mol Sci, 2023 24(18)14271
- Pharmaceutics, 2023 15(2)675
- •••

HTS Library for Drug Discovery

A unique collection of **99,039** compounds, involving over **4,000** core structures, with enhanced structural complexity; compounds have molecular weights ranging from 300 to 500, exhibiting strong drug-like properties, good drugability, and ease of identifying active molecules; sourced from Pfizer, the world's largest pharmaceutical company, with over fifty years of research and development expertise. Suitable for high-throughput screening and high-content screening.

- Enhanced structural complexity: Contains 99,039 compounds, involving over 4,000 core structures, suitable for high-throughput screening and high-content screening.
- Strong drug-like properties: Compounds with molecular weights ranging from 300 to 500 exhibit strong drug-like properties, good drugability, and ease of identifying active molecules, improving the efficiency of drug discovery.
- Sourced from Pfizer, the world's largest pharmaceutical company, with over fifty years of research and development expertise.

% of compounds compliant with Lipinski's Rules

PhysChem Properties	% Compounds
The number of hydrogen bond donors	94
The number of hydrogen bond acceptors	97
Partition coefficient	95
Molecular weight	100

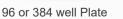
Molecular weight of all compounds < 500 !
Good oral absorption 🛇
Good membrane permeability 📀
Good metabolic stability Simple structure 📀
Easy to synthesize and optimize 📀

Customize Library

Cat.No. L2000

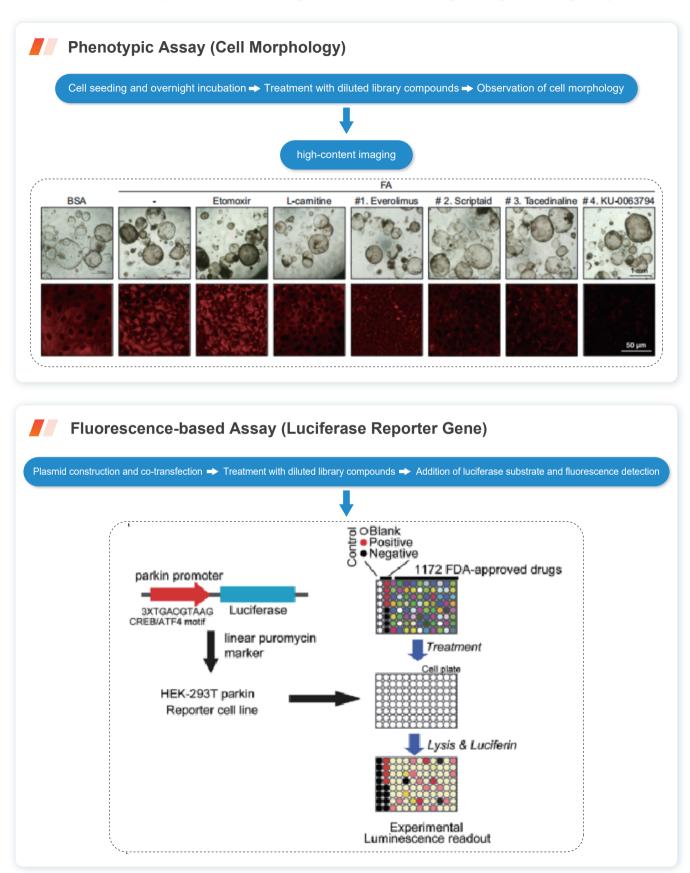
No suitable compound library? The exclusive compound library can be customized according to your needs.

You could select:


\checkmark		
		1
	~	

Specific Compounds

Quantity


Dry/solid or DMSO solution

Please contact us at info@selleckchem.com to customize your library.

Applicable Screening Methods

5

Selleck Compound Library is suitable for phenotypic assays (cell morphology, cell viability, animal phenotypes), fluorescence-based assays (luciferase reporter genes, fluorescent labeling), and ligand binding assays (SPR).

Selleck Compound Libraries

Popular Compound Libraries(14)

FDA-approved Drug Library

- A unique collection of 3,110 approved drugs and API included in pharmacopoeia for high throughput screening (HTS) and high content screening (HCS)
- Verified biological activity and safety profile
- Suitable for drug repurposing
- Includes approved drug information and clinical trial data

Cited by 585 Publications

6

Nat Methods, 2022 19(7):803-811 Nat Biomed Eng, 2022 10.1038/s41551... Blood, 2022 blood.2022015414 Cancer Cell, 2021 S1535-6108(21)00383-4 Chem Soc Rev, 2021 10.1039/d0cs01065k Cancer Discov, 2021 candisc.0872.2020 Cancer Discov, 2021 candisc.0930.2020 Protein Cell, 2021 1-12 Nature, 2020 582(7811):289-293 Cell, 2020 181(7):1518-1532.e14 Cancer Cell, 2020 37(2):200-215.e5 Cell Res, 2020 27;1-16. Signal Transduct Target Ther, 2020 4;5:20. Cell Res, 2019 29(9):739-753 Cell Metab, 2019 7;29(5):1166-1181.e6. Cancer Discov, 2019 9(7):910-925 Protein Cell, 2019 10(3):161-177 Cancer Discov, 2018 8(4):498-515 Nat Med, 2017 23(4):405-408 Nature, 2017 546(7659):533-538 Physiol Rev, 2017 1;97(3):889-938. Cell Stem Cell, 2017 4;20(5):659-674.e9. Cancer Discov, 2015 5(2):154-67.

FDA-approved & Passed Phase I Drug Library

- A unique collection of 3,622 drugs that are marketed around the world or have passed clinical phase 1 and can be used for high throughput screening (HTS) and high content screening (HCS)
- Verified biological activity and safety profile
- Suitable for drug repurposing
- Includes approved drug information and clinical trial data

Cited by 288 Publications

Nat Methods, 2022 19(7):803-811 Nat Biomed Eng, 2022 10.1038/s41551... Blood, 2022 blood.2022015414 Cancer Cell, 2021 S1535-6108(21)00383-4 Chem Soc Rev, 2021 10.1039/d0cs01065k Cancer Discov, 2021 candisc.0872.2020 Cancer Discov, 2021 candisc.0930.2020 Cell, 2020 181(7):1518-1532.e14 Signal Transduct Target Ther, 2020 4;5:20. Cell Metab. 2019 7:29(5):1166-1181.e6. Cancer Discov, 2019 9(7):910-925 Cancer Discov, 2018 8(4):498-515 Nature, 2017 546(7659):533-538 Cancer Discov, 2015 5(2):154-67. Nat Med, 2014 20(8):954-60

Preclinical/Clinical Compound Library

- A unique collection of 3,368 preclinical and clinical compounds for high throughput screening (HTS) and high content screening (HCS)
- 🛇 Related to oncology, cardiology, anti-inflammatory, immunology, neuropsychiatry, analgesia etc.
- Verified biological activity and safety profile
- 🛇 A useful tool for drug repurposing, the application of known drugs to treat new disease indication
- Includes approved drug information and clinical trial data

Cited by 286 Publications

Nat Methods, 2022 19(7):803-811 Nat Biomed Eng, 2022 10.1038/s41551... Blood, 2022 blood.2022015414 Cancer Cell, 2021 S1535-6108(21)00383-4 Chem Soc Rev, 2021 10.1039/d0cs01065k Cancer Discov, 2021 candisc.0872.2020 Cancer Discov, 2021 candisc.0930.2020 Cell, 2020 181(7):1518-1532.e14 Signal Transduct Target Ther, 2020 4;5:20. Cell Metab, 2019 7;29(5):1166-1181.e6. Cancer Discov, 2019 9(7):910-925 Cancer Discov, 2018 8(4):498-515 Nature, 2017 546(7659):533-538 Cancer Discov, 2015 5(2):154-67. Nat Med, 2014 20(8):954-60 Nat Commun, 2023 14(1):6951 Anal Chem, 2023 95(20):7985-7992. J Infect Dis, 2023 228(5):591-603 J Biol Chem, 2023 299(3):102956 bioRxiv, 2023 10.1101/2023.09.15.557919 Br J Cancer, 2022 126(12):1815-1823. Bioact Mater, 2022 14:272-289 Sci Transl Med, 2022 14(652):eabl5654

Cat.No. L3800

Exp Mol Med, 2023 55(3):612-627 Anal Chem, 2023 95(20):7985-7992 J Infect Dis, 2023 228(5):591-603

Nat Commun. 2023 14(1):3445

Cat.No. L1300

Cat.No. L3900

Bioactive Compound Library-I

Cat.No. L1700

- A unique collection of 9,987 bioactive compounds for high throughput screening (HTS) and high content screening (HCS)
- Large compound collection, ideal for high-throughput screening
- Suitable for researchers without specific research targets to conduct exploratory screening

Cited by 367 Publications

Nat Biotechnol, 2023 10.1038/s41587-023... Nat Methods, 2022 19(7):803-811 Nat Biomed Eng, 2022 10.1038/s41551... Blood, 2022 blood.2022015414 Cancer Cell, 2021 S1535-6108(21)00383-4 Chem Soc Rev, 2021 10.1039/d0cs01065k Cancer Discov, 2021 candisc.0872.2020 Cancer Discov, 2021 candisc.0930.2020 Cell Stem Cell, 2021 28(2):257-272.e11

Nat Metab, 2021 3(5):682-700 Cell, 2020 181(7):1518-1532.e14 Cell Res, 2020 30(8):678-692 Signal Transduct Target Ther, 2020 4;5:20. Cell Metab, 2020 31(3):564-579 Cell, 2019 7;176(4):687-701.e5. Cell Metab, 2019 7;29(5):1166-1181.e6. Cancer Discov, 2019 9(7):910-925 Cancer Discov, 2018 8(4):498-515 Nat Med, 2017 23(4):405-408 Nature, 2017 546(7659):533-538 Physiol Rev, 2017 1;97(3):889-938. Cancer Cell, 2016 29(6):874-888 Cancer Discov, 2015 5(2):154-67. Nat Med, 2014 20(8):954-60 Proc Natl Acad Sci U S A, 2023 120(4)... Haematologica, 2023 108(5):1272-1283 Anal Chem, 2023 95(20):7985-7992. J Infect Dis, 2023 228(5):591-603 iScience, 2023 26(9):107548 Cancers (Basel), 2023 15(22)5347 Front Mol Biosci, 2023 10:1104505 Sci Rep, 2023 13(1):14911 Pharmaceuticals (Basel), 2023 16(4)548 ACS Omega, 2023 8(11):10397-10402 Mol Pain, 2023 19:17448069221148351

Bioactive Compound Library- ${\rm I\hspace{-0.5mm}I}$

Cat.No. L1700- II

- A unique collection of 5,309 bioactive compounds for high throughput screening (HTS) and high content screening (HCS)
- Innovative compounds from the largest pharmaceutical company in the world, Diverse and novel bioactivity
- Large compound collection, ideal for high-throughput screening
- Suitable for researchers without specific research targets to conduct exploratory screening

Cited by 19 Publications

Nat Biotechnol, 2023 10.1038/s41587-023... Proc Natl Acad Sci U S A, 2023 120(4)... Haematologica, 2023 108(5):1272-1283 iScience, 2023 26(9):107548 Cancers (Basel), 2023 15(22)5347 Front Mol Biosci, 2023 10:1104505 Sci Rep, 2023 13(1):14911 Pharmaceuticals (Basel), 2023 16(4)548 ACS Omega, 2023 8(11):10397-10402 Mol Pain, 2023 19:17448069221148351 Bioinform Biol Insights, 2023 17... bioRxiv, 2023 2023.07.19.549715 Cancer Res, 2022 82(4):721-733 Proc Natl Acad Sci U S A, 2022 119(11)... Cell Syst, 2022 13(7):547-560.e3 Cell Calcium, 2022 106:102640 Mol Biol Cell, 2022 33(6):ar54 J Biol Chem, 2021 S0021-9258(21)00703-

Kinase Inhibitor Library

Cat.No. L1200

- A unique collection of 2,015 kinase inhibitors for high throughput screening (HTS) and high content screening (HCS)
- Targets kinases such as EGFR, PI3K, Aurora Kinase, CDK, and MEK
- Covers a wide range of kinase targets

Cited by 419 Publications

Nat Methods, 2022 19(7):803-811 Nat Biomed Eng, 2022 10.1038/s41551... Nat Cell Biol, 2022 24(1):88-98 Blood, 2022 blood.2022015414 Cancer Cell, 2021 S1535-6108(21)00383-4 Chem Soc Rev, 2021 10.1039/d0cs01065k Cancer Discov, 2021 candisc.0872.2020 Cancer Discov, 2021 candisc.0930.2020 Gut, 2021 70(5):890-899 Cell, 2020 181(7):1518-1532.e14 Nat Methods, 2020 17(3):302-310 Signal Transduct Target Ther, 2020 4;5:20. Cell Metab, 2019 7;29(5):1166-1181.e6. Cancer Discov, 2019 9(7):910-925 Cancer Discov, 2018 8(4):498-515 Nat Med, 2017 23(4):405-408 Nature, 2017 546(7659):533-538 Cancer Cell, 2017 32(5):684-700 Gastroenterology, 2017 153(5):1429-1443 Cancer Cell, 2015 28(2):240-52 Cancer Cell, 2015 28(2):240-52 Cancer Discov, 2015 5(2):154-67. Nat Med, 2014 20(8):954-60 Nat Commun, 2024 15(1):1041 Adv Sci (Weinh), 2023 10(5):e2205483 Cancer Lett, 2023 52:215981 Aging Cell, 2023 22(10):e13948

 Breast Cancer Res, 2023 25(1):51

 Anal Chem, 2023 95(20):7985-7992.

 J Infect Dis, 2023 228(5):591-603

 Stem Cell Reports, 2023 18(8):1672-1685

 Biomolecules, 2023 13(2):49

 J Biol Chem, 2023 S0021-9258(23)01885-9

 Biomedicines, 2023 11(6)1716

 Sci Rep, 2023 13(1):1442

 Pharmaceuticals (Basel), 2023 16(1)75

 Cell Div, 2023 18(1):8

 bioRxiv, 2023 1.0.1101/2023.09.15.55791

 Br J Cancer, 2022 126(12):1815-1823.

 Sci Transl Med, 2022 14(652):eabl5654

Nat Commun, 2022 13(1):2169 Nat Commun, 2022 13(1):2725 Nat Commun, 2022 13(1):2572 Adv Sci (Weinh), 2022 9(22):e2201785 Nucleic Acids Res, 2022 50(13):7420-7435 J Med Virol, 2022 10.1002/jmv.27951 Cell Death Differ, 2022 10.1038/s41418-022... Clin Cancer Res, 2022 clincanres.0100.2022 J Exp Clin Cancer Res, 2022 41(1):86 Clin Transl Med, 2022 12(7):e961 Haematologica, 2022 107(1): 77–85 BMC Med, 2022 20(1):175

...

Clinical and FDA-approv	ved Related (4)		
FDA-approved Drug Library A unique collection of 3,110 approve	Cat.No. L1300 时	FDA-approved & Passed Phase I Drug 3,622 Compounds	Library Cat.No. L3800
Preclinical/Clinical Compound Lib 3,368 Compounds	rary Cat.No. L3900 时	FDA-approved Anticancer Drug Lik 1,746 Compounds	orary Cat.No. L8000
Bioactive Compound Lil	braries (5)		
Bioactive Compound Library-I 9,987 Compounds	Cat.No. L1700	Bioactive Compound Library- II 5,309 Compounds	Cat.No. L1700- II
Express-Pick Library 3,010 Compounds	Cat.No. L3600 🐽	HTS Library for Drug Discovery 99,010 Compounds	Cat.No. L5000
Phenotypic Screening Library 4,233 Compounds	Cat.No. L8500		
Inhibitor Related (7)			
Kinase Inhibitor Library 2,015 Compounds	Cat.No. L1200	Highly Selective Inhibitor Library 590 Compounds	Cat.No. L3500
Cytokine Inhibitor Library 633 Compounds	Cat.No. L9500	Inhibitor Library 4,943 Compounds	Cat.No. L1100

Kinase Inhibitor Library 2,015 Compounds	Cat.No. L1200 时	Highly Selective Inhibitor LibraryCat.No. L3500590 Compounds	HOT
Cytokine Inhibitor Library 633 Compounds	Cat.No. L9500	Inhibitor LibraryCat.No. L1104,943 Compounds	0
Protease Inhibitor Library 456 Compounds	Cat.No. L2500	Protein-protein Interaction Inhibitor Library Cat.No. L8100 408 Compounds	0
Tyrosine Kinase Inhibitor Library 654 Compounds	Cat.No. L1800		

Natural Product and Medicine Food Homology Related (9)

Natural Product Library 3,070 Compounds	Cat.No. L1400	Alkaloid Compound LibraryCat.No. L7900441 Compounds
Flavonoid Compound Library 260 Compounds	Cat.No. L7700	Medicine Food Homology Compound Library Cat.No. L6800 531 Compounds
Natural Organic Compound Library 1,253 Compounds	Cat.No. L7600	Plant Extract Library Cat.No. L9800 796 Compounds Cat.No. L9800
Natural Phenol Compound Library 571 Compounds	Cat.No. L1410	Natural Terpenoid Compound LibraryCat.No. L1420356 Compounds
Traditional Chinese Medicine Library 1,913 Compounds	Cat.No. L8300	

Metabolism Related (9)

Metabolism Compound LibraryCat.No. L373,243 Compounds	Carbohydrate Metabolism Compound Library Cat.No. L9100 572 Compounds
Lipid Metabolism Compound LibraryCat.No.521 Compounds	L9200 Mouse Metabolite Compound Library Cat.No. L8900 158 Compounds
Human Endogenous Metabolite Compound Library Cat.No. L4 848 Compounds	Glutamine Metabolism Compound Library Cat.No. L6900 479 Compounds
Glycolysis Compound LibraryCat.No. L430 Compounds	Gut Microbial Metabolite Library Cat.No. L8400 146 Compounds
Mitochondria-Targeted Compound Library Cat.No. I	L9900

719 Compounds

Cell Death Related (4)			
Apoptosis Compound Library 1,231 Compounds	Cat.No. L3300	Autophagy Compound Library 1,026 Compounds	Cat.No. L2600
Ferroptosis Compound Library 713 Compounds	Cat.No. L6400	Pyroptosis Compound Library 756 Compounds	Cat.No. L7400

B	v Sic	nali	na	Path	wav	(26)
		,				()

Calcium Channel Blocker Library 165 Compounds	Cat.No. L9000	Exosome Secretion Related Compound Library 52 Compounds	Cat.No. L8800
Human Hormone Related Compound Library 454 Compounds	Cat.No. L9400	Oxidative Stress Compound Library 1,437 Compounds	Cat.No. L9700
Stem Cell Differentiation Compound Library 295 Compounds	Cat.No. L9300	Human Transcription Factor Compound Library 740 Compounds	Cat.No. L9600
Angiogenesis Related compound Library 404 Compounds	Cat.No. L5200	Antioxidant Compound Library 817 Compounds	Cat.No. L6500
Cell Cycle compound library Ca 506 Compounds Ca	at.No. L5100	Cytoskeletal Signaling Pathway Compound Library 543 Compounds	Cat.No. L6300
DNA Damage/DNA Repair compound Library 820 Compounds	Cat.No. L4600	Endoplasmic Reticulum Stress Compound Library 175 Compounds	Cat.No. L8600
Epigenetics Compound Library 868 Compounds	Cat.No. L1900	GPCR Compound Library 1,425 Compounds	Cat.No. L2200

By Signaling Pathway (25)

HIF-1 Signaling Pathway Compound Library Cat.No. L6100 443 Compounds	Histone modification compound library Cat.No. L4900 337 Compounds
Ion Channel Ligand LibraryCat.No. L2700756 Compounds	JAK/STAT compound libraryCat.No. L5400191 Compounds
MAPK Inhibitor LibraryCat.No. L3400258 Compounds	Methylation Compound LibraryCat.No. L6600168 Compounds
NF-кВ Signaling Compound Library Cat.No. L5500 494 Compounds	PI3K/Akt Inhibitor LibraryCat.No. L2800348 Compounds
Stem Cell Signaling Compound Library Cat.No. L2100 1,003 Compounds	TGF-beta/Smad compound library Cat.No. L5600156 Compounds
Ubiquitination Compound LibraryCat.No. L6000213 Compounds	

By Disease (10)

Anti-Aging Compound Library 2295 Compounds	Cat.No. L6200	Anti-alzheimer Disease Compound LibraryCat.No. L5900638 Compounds
Anti-cancer Compound Library04,183 Compounds	Cat.No. L3000	Anti-cancer Compound Library- IICat.No. L7100901 CompoundsCat.No. L7100
Anti-cancer Metabolism Compound Library 317 Compounds	Cat.No. L5700	Anti-Cardiovascular Disease Compound Library Cat.No. L7500 694 Compounds
Anti-diabetic Compound Library 147 Compounds	Cat.No. L2900	Cambridge Cancer Compound Library Cat.No. L2300 245 Compounds
Obesity Compound Library Output 915 Compounds 0	Cat.No. L6700	Small Molecule Immuno-Oncology Compound Library Cat.No. L4800 248 Compounds

Anti-infection and Antiviral Related (6)

Antibiotics compound Library 484 Compounds	Cat.No. L5300	Anti-infection Compound Library 1,569 Compounds	Cat.No. L3100
Anti-parasitic Compound Library 235 Compounds	Cat.No. L8200	Antiviral Compound Library 757 Compounds	Cat.No. L7000
Macrocyclic Compound Library 184 Compounds	Cat.No. L7300	Nucleoside Analogue Library 230 Compounds	Cat.No. L7200

Neuronal and Immunology Related (3)

CNS-Penetrant Compound LibraryCat.No. L4700718 Compounds	Immunology/Inflammation Compound Library Cat.No. L4100 3,369 Compounds
Neuronal Signaling Compound Library Cat.No. L4000 1,750 Compounds	
Fragment and Covalent Related (3)	

Covalent Inhibitor Library 843 Compounds Cat.No. L5800

Cat.No. L1600

Fragment Library 1,015 Compounds

Drug-like Compound Library 2,260 Compounds

Cat.No. L7800

CONTACT US

United States

Tel: (832) 582-8158 E-mail: sales@selleckchem.com

Europe

Tel: +49 221 3798 9904 E-mail: eu.order@selleckchem.com